Math 246A Lecture 15 Notes

Daniel Raban

October 29, 2018

1 Rouché's Theorem, Schwarz's Lemma, and Pick's Theorem

1.1 Counting zeros/poles of meromorphic functions and Rouché's theorem

Theorem 1.1. Suppose f is meromorphic in $\{z : |z - z_0| < R\}$, let 0 < r < R, and let $\gamma = \{z : |z - z_0| = r\}$. Also, assume that $f(\gamma) \cap \{a, \infty\} = \emptyset$. Then

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z) - a} \, dz = Z - P,$$

where Z is the number of zeros of f - a in $\{z : |z - z_0| < r\}$ and N is the number of poles of f - a in $\{z : |z - z_0| < r\}$, both counted with multiplicity.

Proof. Let z_1, z_2, \ldots, z_N be the zeros of f - a in $\{z : |z - z_0| < r\}$, and let p_1, p_2, \ldots, p_M be the poles of f - a in $\{z : |z - z_0| < r\}$, with multiplicities. Let

$$g(z) = \frac{f(z) - a}{\prod_{j=1}^{N} (z - z_j)} \prod_{k=1}^{M} (z - p_k).$$

Then g is holomorphic, zero free, and pole free in $\{z : |z - z_0| < r\}$. So

$$0 = \frac{1}{2\pi i} \int_{\gamma} \frac{g'}{g} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f-a} dz + \frac{1}{2\pi i} \sum_{j=1}^{M} \int_{\gamma} \frac{1}{z-p_j} dz - \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z-z_j} dz$$
$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f-a} dz + M - N.$$

Corollary 1.1 (Rouché). Let $f, g \in H(\Omega)$, and let $\{z : |z - z_0| < R\} \subseteq \Omega$, where f, g have no zeroes on $\{z : |z - z_0| = R\}$. If |f - g| < |f| + |g| on $\{z : |z - z_0| = R\}$, then on $\{z : |z - z_0| < R\}$, f and g have the same number of zeros, counted with multiplicity.

Proof. Let f = f/g. Then h is meromorphic on $\{z : |z - z_0| < R + \varepsilon\}$ for some $\varepsilon > 0$. Then

$$\frac{1}{2\pi i} \int_{|z-z_0|=R} \frac{h'(z)}{h(z)} dz = \# \text{ zeros of } f - \# \text{ zeros of } g.$$

This is also equal to the winding number $n(h(|z - z_0| = R), 0)$, which is zero because |h - 1| < |h| + 1, which means that h has winding number 0 around 0.

1.2 Schwarz's lemma and Pick's theorem

Let $\mathbb{D} = \{z : |z| < 1\}$. Let $\mathbb{T} = \partial \mathbb{D}$. Let $T : \mathbb{D} \to \mathbb{D}$ be a Möbius transformation. such that $T(\alpha) = 0$ with $\alpha \in \mathbb{D}$. Then $T(\partial \mathbb{D}) = \partial \mathbb{D}$, so $T(1/\overline{\alpha}) = \infty$, since T sends symmetric points to symmetric points. So we have

$$T(z) = e^{i\lambda} \frac{z - \alpha}{1 - \overline{\alpha}z},$$

where $\lambda \in \mathbb{R}$.

We have just proved the following.

Theorem 1.2. Let T be a Möbius transformation. Then $T : \mathbb{D} \to \mathbb{D}$ iff

$$T(z) = e^{i\lambda} \frac{z - \alpha}{1 - \overline{\alpha}z},$$

where $\alpha \in \mathbb{D}$, and $\lambda \in \mathbb{R}$.

Lemma 1.1 (Schwarz¹). Let $f : \mathbb{D} \to \mathbb{D}$ be analytic with f(0) = 0. Then $|f(z)| \le |z|$, and $|f'(0)| \le 1$. If equality holds in either case, then $f(z) = e^{i\lambda}z$ for $\lambda \in \mathbb{R}$.

Proof. We can write $f(z) = a_1 z + z_2 z^2 + \cdots$. Let $g(z) = f(z)/z = a_1 + a_2 z + \cdots$. So $g: \mathbb{D} \to \mathbb{C}$, and g is holomorphic. For $z \le r < 1$, $|g(z)| \le 1/r$ by the maximum principle. Then $|g(z)| \le 1$, so $|f(z)| \le |z|$. Also, $|g'(0)| \le 1$, so $f'(0) \le 1$.

Equality in either case implies |g(z)| = 1 for some $z \in \mathbb{D}$. Then |g| = 1 on \mathbb{D} by the maximum principle. So $f(z) = e^{i\lambda z}$.

Corollary 1.2 (Pick's theorem). Let $f : \mathbb{D} \to \mathbb{D}$ be analytic and $z \in \mathbb{D}$. Then

$$\frac{f'(z)}{1-|f(z)|^2} \le \frac{1}{1-|z|^2},$$

and equality holds if and only if f is a Möbius transformation.

¹According to Professor Garnett, entire books have been written on this lemma.

Proof. Take $z_0 \in D$. Let

$$F(z) = \frac{f(\frac{z+z_0}{1+\bar{z}_0 z}) - f(z_0)}{1 - \overline{f(z_0)}f(\frac{z+z_0}{1+\bar{z}_0 z})}.$$

Then $F = S \circ f \circ T$, where $Tz = (z + z_0)/(1 + \overline{z}_0 z)$, and $Sw = (w - w_0)/(1 - \overline{w}_0 w)$, where $w_0 = f(z_0)$.

Then $F: \mathbb{D} \to \mathbb{D}$, and F(0) = 0. So we get $|F'(0)| \leq 1$, and

$$F'(0) = S'(w_0)f'(z_0)T'(0).$$

Observe that

$$T'(0) = 1 - |z_0|^2,$$

$$S'(w_0) = \frac{1}{1 - |w_0|^2}$$

Then

$$\frac{1}{1-|w_0|^2}|f'(z_0)|(1-|z_0|^2) \le 1.$$

1.3 Hyperbolic distance

Definition 1.1. Let γ be a piecewise C^1 arc in \mathbb{D} , $\gamma = \{z(t) : a \leq t \leq b\}$. Then the **arc** length of γ is

$$\int_{a}^{b} |z'(t)| \, dt$$

We write this as $\int_a^b ds$, where ds = |z'(t)| dt. This is the length of the parametrized arc z(a) to z(b). This is independent of parametrization by change of variables.

Definition 1.2. Let $z_1, z_2 \in \mathbb{D}$, and let

$$\rho(z_1, z_2) = \inf_{\substack{\gamma(a) = z_1 \\ \gamma(b) = z_2}} \int_{\gamma} \frac{1}{1 - |z|^2} \, ds.$$

This is the hyperbolic distance from z_1 to z_2 .

This is a metric. Moreover, if T is a Möbius transformation,

$$\rho(Tz_1, Tz_2) = \rho(z_1, z_2).$$